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Answers: 

 

1. C 

2. A 

3. B 

4. A 

5. D 

6. D 

7. A 

8. B 

9. C 

10. C 

11. A 

12. B 

13. A 

14. A 

15. B 

16. C 

17. A 

18. A 

19. D 

20. A 

21. E 

22. C 

23. D 

24. C 

25. D 

26. B 

27. E 

28. B 

29. B 

30. A 
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Solutions: 

 

1. The largest term in the rows whose numbers are answer choices are 
6

20,
3

 
 

 
 

 
7 8 9

35,  70,  and 126
3 4 4

     
       

     
, so the lowest such row is row 8.  

 

2.            
6 2 3 4 5 66 5 4 3 22 6 2 15 2 20 2 15 2 6 2 2x y x x y x y x y x y x y y          

 6 5 4 2 3 3 2 4 5 612 60 160 240 192 64x x y x y x y x y xy y        

 

3. 
8

8

0

8
2 256

j j

 
  

 
  

 

4. The difference in consecutive terms in A is 2
5

, thus creating an arithmetic 

sequence.  B is geometric and D is harmonic . 

 

5.  3 3 1 3
2 2 1 1 or 

2 2
r r r r i        , so the second term could be 2 1 2   

or  1 3 1
2 2 6

2 2 2
i i

 
      
 

 or  1 3 1
2 2 6

2 2 2
i i

 
      
 

.  The third 

number here is D. 

 

6. Since the sum of the roots is 15, 5 must be a root.  Therefore, 3 215 71 105x x x    

       25 10 21 5 3 7x x x x x x        , so the roots are 3, 5, and 7, making 

their common difference 2. 

 

7. Let L  be the limit.  Then 2
1lim lim lim 12 12 12n n n

n n n
L a a a L L L


  

          

   20 12 4 3 4 or 3L L L L L L          , but since the terms in the sequence 

are all positive, 3L . 

 

8. 
1

lim 2n n
n

n

a b





  , so the series 
1

n
n

a




  converges.  Since lim 2n
n

b


 , 
1

n
n

b




  diverges and 

it must have been the case that lim 0 2n
n

a


  , ruling out A and D.  C is wrong also 

because  nb  converges to 2, not diverges. 
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9.   2 22 2
1 1 2 0 2 2 1 2 or

2
1

2
1

1 ...

x x x x x x x x
x

               






 

 1x   , but the quantity must be positive since it only adds and divides positive 

numbers, so 2x  . 

 

10. The series is the harmonic series, which diverges, but 
1

0 as n
n
  , so the 

sequence converges. 

 

11. The series is a -seriesp  with 2p  , so the series converges.  Also, 
2

1
0 as

n
  n , 

so the sequence converges. 

 

12. This is the exact statement of the Direct Comparison Test, so because 
1

n
n

b




 , the 

“larger” series, converges, 
1

n
n

a




 , the “smaller” series also converges.  Additionally, 

because 
1

n
n

c




 , the “smaller” series, diverges, 
1

n
n

a




 , the “larger” series, diverges. 

 

13. The series consists only of positive terms, so the Limit Comparison Test can be used, 

and 

3 2

5 4 3 25 4 3 2

5 4 3 2

2

4 3 7 19
4 3 7 19 26 15 126 11 12lim lim

1 6 15 126 11 12 3n n

n n n
n n n nn n n n

n n n n

n

 

  

       
   

, so 

both series converge or diverge.  Since 
2

1

1

n n





  converges (see problem 11), the series 

in question also converges.  Since all the terms are positive, it also converges 

absolutely (since the absolute values of the terms are just the terms themselves). 

 

14. The first 58 terms of the series are negative, but after that, the terms become 

positive (it isn’t necessary to be able to pinpoint the exact number, just that 

eventually the terms will become positive since exponentials grow faster than any 

polynomial).  Therefore, we will examine the series 
10

59

1

2nn n



 
 .  Using the Limit 

Comparison Test on this series, 
10 10

10

1
22lim lim lim 1 1 0 1

1 2 2

2

nn

n nn n n

n

n n

n

  

 
      

 

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(again, because exponentials grow faster than polynomials).  Therefore, either both 

series converge or both series diverge.  Because 
1

1

2nn





  is geometric with ratio 
1

2
, the 

series converges, meaning the series 
10

59

1

2nn n



 
  converges (and absolutely, just as 

in problem 13).  Therefore, adding 58 terms (or any finite number of terms) doesn’t 

change the convergence, so the series in question converges absolutely. 

 

15. 
 

2

1

ln

n

n n n






  is an alternating series, and since 

1

lnn n
 decreases and 

1
0 as 

ln
n

n n
  , 

by the Alternating Series Test, this series converges.  To determine if it converges 

absolutely, consider 
2

1

lnn n n





 .   
22

1
limln ln lim lnln lnln2

ln

t

t t
dx x t

x x



 
    , so 

this new series diverges, meaning the original series does not converge absolutely.  

It therefore converges conditionally. 

 

16.  lim 1 sin
n

n
n


  does not exist (the function oscillates), so by the Test for Divergence, 

the series diverges. 

 

17. 

 
 

 
 

 
 

1

2 3

2 1

10

2 4 10 1 5
lim lim 1

16 2 810

1 4

n

n

nn n

n

n n

n

n





 





 
  





, so by the Ratio Test, the series converges 

absolutely. 

 

18. 
1 1

lim lim 0 1
n

n
n nn n 

 
   

 
, so by the Root Test, the series converges absolutely. 

 

19. The first four terms in the Maclaurin expansion for sinx  are 
3 5 7

3! 5! 7!

x x x
x    , so for 

 2sin x , the first four terms are 
     

3 5 7
2 2 2 6 10 14

2 2

3! 5! 7! 3! 5! 7!

x x x x x x
x x       . 

 

20. For    sin cosf x x ,    ' cos cos sinf x x x   and    '' cos cos cosf x x x   

            sin sin cos sin 0 sin1,  ' 0 0,  and '' 0 cos1x x x f f f        .  This 
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 makes the second-degree Taylor polynomial    
  2'' 0

0 ' 0
2!

f
f f x x   

 
2

sin1 cos1
2

x
   

 

21. Since the first-degree Taylor polynomial for  is 1xe x , the third-degree Taylor 

polynomial for 
3 3 is 1xe x .  Therefore,  

3

2
2 2

3 4

0 0
0

1
1

4
xe dx x dx x x

 
    

 
   

 2 4 6   . 

 

22. 2 2' cos sin sec csc cot cscy x x x x x x     , so 
2 2

1 2 1
4 2 2

y
 

     
 

 

 2 2 2   and 
2 2

' 2 2 1 2 2
4 2 2

y
 

        
 

, making the linearization 

  2 2 2 2
4

L x x
 

    
 

.  Therefore,     2
2 2 2 2 2 2

4
y L


      

  
2

8
4

  . 

 

23. A well-known result of the Fibonacci sequence is that 2
1

1
n

k n
k

F F




  .  Therefore, 

30

32
1

1 2,178,309 1 2,178,308k
k

F F


     . 

 

24. 
 

 
    2

1 1 1 1

1 1 2 1 11 1

2 2 2 6 2

n k n n

k i k k

k k n n n n n
i k k

   

    
     

 
    

 
     1 2 4 2 1 21

2 6 3 2 1 3

n n n n n n n     
     

   
 

 

25. Using the Ratio test, 
 

 

1 1
12 4

2
8 11lim lim 2 8 2 1 2

2 4 1 8
2

n n
n

n nn nn

x
nn x x x

n
x

n

 


 


        




, 

so the radius of convergence is 1 0.125
8
 . 
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26. Using the Ratio test, 

 

 

1

1lim lim 1 1 1
1

n

nn n

x
n xn x x
nx

n



 


       


, but the endpoints 

must be tested as well.  If 1x   , the series becomes 
 

1 1

1 1
n

n nn n

 

 

  , which is the 

harmonic series, which diverges.  If 1x  , the series becomes 
 

1

1
n

n n






 , which 

converges by the Alternating Series test because 
1

n
 is decreasing and 

1
0

n
  as 

n .  Therefore, the interval of convergence is  1,1 . 

 

27. 
  1

2

0 0

1
1 2

2 ! !

n

n
n n

e
n n

 

 

    since the power series for xe  is 
0 !

n

n

x

n





 , which converges to 

xe  for all x  

 

28. 
0

9 n

n






  is a geometric series, so 
0

1 1 9
9

1 8 81
9 9

n

n






  


  

 

29. Let S  be the sum of the series; then 
1 2 3 4

...
4 16 64 256

S      .  Multiplying this by 

1

4
 yields 

1 1 2 3
...

4 16 64 256
S     .  Subtracting this second equation from the first 

yields 
1 1

3 1 1 1 1 1 44 4...
1 34 4 16 64 256 3 91

4 4

S S         


. 

 

30. 
 

    2 2

2 2
0 0

1 1
1

1 1

n n n

n n

x x
x x

 

 

    
  

   

 


